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Abstract
The influence of Dzyaloshinskii–Moriya (DM) interaction on the spin–Peierls
systems is studied by use of theoretical analysis and the Lanczos numerical
method. The ground sate of the spin–Peierls system is still a dimerized phase
when DM interaction is present. The results show that the uniform DM
interaction is always against dimerization but the staggered DM interaction
may act in favour of or against dimerization. There exists a critical point where
the staggered DM interaction has no influence on dimerization.

Since the first inorganic spin–Peierls compound CuGeO3 [1] was found in 1993, it has attracted
much attention in condensed matter physics. Various methods have been applied to obtain an
accurate description of its phase diagram. In general, this compound is considered as a linear
Heisenberg antiferromagnetic chain along the c-axis with the exchange interaction dependence
on the intersite distance. Recently, several electron paramagnetic resonance investigations have
revealed that there exists Dzyaloshinskii–Moriya (DM) interaction [2,3] in CuGeO3 [4–6]. The
DM interaction is found nowadays to be present in a number of quasi-one-dimensional and
two-dimensional magnetic systems. For example it is found that the DM interaction plays a
central role in the magnetic properties of BaCu2M2O7 (M = Si and Ge) [7, 8] and has been
used to interpret an anomalous magnetic behaviour in the YVO3–SrVO3 system [9].

The DM interaction is an antisymmetric spin exchange interaction between two spins
s1,s2, described as D · (s1 × s2). In a chain, vector D may spatially vary in both direction
and magnitude. However, the symmetry arguments usually rule out most of the possibilities
and the theoretical discussions focus mainly on two principal cases. One is the uniform DM
interaction [10], the other is the staggered DM interaction [11]. The influence of the uniform
or staggered DM interaction on the ground state properties of the Heisenberg one-dimensional
model has been reported in [12,13]. In the uniform case the model can be reduced to the XXZ

spin exchange model, and then solved exactly. Recently, a model of the XY spin chain with a
ternary DM interaction has also been introduced and solved [14]. For both Heisenberg and XY

models with DM interaction, the spin–spin correlation function possess an incommensurate
structure [15].

0953-8984/02/080199+05$30.00 © 2002 IOP Publishing Ltd Printed in the UK L199

http://stacks.iop.org/cm/14/L199


L200 Letter to the Editor

For the spin–Peierls system, using numerical calculation, Derzhko and his co-workers [16]
analysed the ground-state energy of the dimerized spin- 1

2 transverseXX and Heisenberg chains
with DM interaction to study the influence of the latter interaction on the spin–Peierls instability.
They found that uniform DM interaction may act against the dimerization but staggered DM
interaction may act in favour of the dimerization. However, whether the staggered DM
interaction always enhances the dimerization has not been clearly answered. In this letter,
we use theoretical analysis and a numerical method to study the effect of the staggered DM
interaction on the dimerization. After a canonical transformation, the previous results will
become clear. Furthermore, we find that whether the staggered DM interaction enhances the
dimerization depends on the dependence of DM interaction on the distortion amplitude and
there exists a critical point where DM interaction has no influence on dimerization. If the
dependence of staggered DM interaction on the distortion amplitude is weak DM interaction
will weaken the dimerization; when its dependence is large enough DM interaction will enhance
the dimerization.

We deal mainly with uniform and staggered DM interaction in the spin–Peierls–Heisenberg
chain, and study the effect of DM interaction on dimerization in detail. The spin–Peierls–
Heisenberg chain Hamiltonian we consider has the form

H =
∑
n

[Jn(sn · sn+1) + Dn · (sn × sn+1)] + 1
2K

∑
n

(un − un+1)
2, (1)

where n denotes the sites of a chain with total site number N0 and sn (sx
n, s

y
n, s

z
n) are s = 1/2

spin operators. The first term in the Hamiltonian (1) is the isotropic exchange interaction with
spin–Peierls coupling Jn = J [1 +α(un −un+1)]; the second term represents the antisymmetric
anisotropic exchange interaction or DM interaction between the neighbouring sites n and
n+ 1. The last term is the elastic energy, with un the displacements of magnetic ions. Without
DM interaction the ground state of Hamiltonian (1) is in general in the dimerized phase, i.e.
un −un+1 = (−1)nu0, and in the following we denote the dimerization parameter by δ = αu0.

For simplification, we choose the vector Dn to be directed along the z-axis, Dn = |Dz
n|.

It has been argued that the directions of Dn are not changed by the dimerization [6]; however,
the dependence of the isotropic exchange interaction and DM interaction on the intersite
distance may be different [3]. Therefore, two kinds of DM interaction, i.e. uniform and
staggered interaction described by Dz

n = D[1 + (−1)nβδ], will be studied. The parameter β
is introduced to describe the effect of different DM interaction dependence on the intersite
distance. If β = 0 the DM interaction does not depend on the lattice distortion, i.e. DM
interaction is uniform, whereas for β = 1 the dependence of DM interaction on the lattice
distortion is the same as that for the isotropic exchange interaction Jn.

We observe that the Hamiltonian (1) can be simplified by a canonical transformation [13]

H = e−iUHeiU (2)

with

U =
N0∑
n=1

αns
z
n, αn =

n−1∑
i=1

tan−1(Dz
i /Ji) (3)

and α1 = 0. It should be noted that this transformation was applied to open chains. Periodic
boundary conditions require αN0 = 0 mod 2π , which is not generally satisfied. However, the
thermodynamic properties of the initial and transformed Hamiltonian are identical since in the
thermodynamic limit N0 → ∞ the influence of boundary conditions can be neglected.

After the transformation, the Hamiltonian has the form

H̃ =
∑
n

[√
J 2
n + Dz2

n (sx
ns

x
n+1 + sy

ns
y

n+1) + Jn(s
z
ns

z
n+1)

]
+
N0

2
K

(
δ

α

)2

. (4)
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We notice that
√
J 2
n + Dz2

n can be written as J ′(1 + (−1)nδ′) with

J ′ = J

[√
ρ + σ

2
+

√
ρ − σ

2

]
(5)

and

δ′ = σ

ρ + ρ

√
1 −

(
σ
ρ

)2
(6)

where we have set

ρ = 1 + δ2 + (D/J )2 + (βδD/J )2 (7)

and

σ = 2(1 + (D/J )2β)δ. (8)

Now it is clear that the above Hamiltonian can be reexpressed as a new spin–Peierls Hamiltonian

H̃ =
∑
n

[J (1 + (−1)nδ′)(sx
ns

x
n+1 + sy

ns
y

n+1) + J ′
n(s

z
ns

z
n+1)] +

N0

2
K ′δ′2. (9)

This implies that the introducing of DM interaction induces the varying of parameters J ′
n and

K ′, i.e. exchange coupling and elastic coefficient. In the special cases of β = 0, 1, we obtain

K ′|β=0 
 (1 + (D/J )2)
3
2 K, (10)

and

K ′|β=1 
 (1 + (D/J )2)−
1
2 K. (11)

It is evident that when the uniform DM interaction is included the dimerization parameter δ
of the spin–Peierls system will decrease due to the increasing elastic coefficient, while the
staggered DM interaction with Dz

n = D[1 + (−1)nδ] will enhance the dimerization due to the
decreasing elastic coefficient.

In the above, we study the influence of DM interaction on the dimerization qualitatively.
This analysis is consistent with the conclusion of previous works on the XX model [16]. Since
the DM interaction will induce anisotropy in the exchange coupling parameter, the above
discussion is not rigorous. In the following, we use the numerical method to study it exactly.

We use the Lanczos method [18, 19] to calculate the low-lying energy spectrum of
Hamiltonian (4) with finite size. Through comparing the total ground-state energy of the
dimerized chain with the uniform case in the presence of DM interaction on dimerization,
we can analyse the influence of DM interaction on dimerization. In calculation, it should be
noted that the system always has gaps due to the finite-size effect, so the system does not
have conformal invariance. In order to extract the finite-size effect, we use the following
extrapolated formula to obtain the results of the infinite-length chain:

ε0(J,D, β, δ,N) = ε0(J,D, β, δ) +
ρ

N
+

λ

N2
, (12)

where the parameters ρ and λ will be determined by fitting the numerical data. The energy
density ε0(δ) of the ground state was calculated for δ varying from 0 to 1. ε0(δ) consists
of the magnetic part and the elastic part. In figure 1, ε0(δ) − ε0(0) versus N−1 was plotted
for δ = 0.2, D = 0.8, β = 1, K = 0.85 as an example to verify our finite scaling law
equation (12). Therefore, from the numerical results and the scaling law, we can obtain the
ground-state energy ε0(δ) of an infinite-length chain, and study its dependence on the model
parameters. The derivative of ε0(δ) versus δ is considered for various cases of DM interaction.
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Figure 1. The dependence of the ground-state energy on the lattice number. The solid curve in the
figure is the function −0.0283 + +0.09752/N + 0.22466/N2.

(This figure is in colour only in the electronic version)
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Figure 2. Dependence of ε(δ) − ε(0) on δ for the spin–Peierls chain with DM interaction.
J = 1,Ka2 = 0.85; (a) is for the case of uniform DM interaction (β = 0); (b) is for the
case of staggered DM interaction (β = 1).

The condition (∂ε0(δ))/∂δ = 0 always has a nonzero solution δ∗. Because δ∗ is a function of
parameters D,β and K , we can discuss the influences of DM interaction on the dimerization.
In figure 2 we show the relationship between ε0(δ)− ε0(0) and δ with β = 0, 1 for D varying
from 0 to 1. It is evident that for β = 1 DM interaction acts in favour of dimerization, whereas
against it for β = 0. This result is similar to that of [16].

From the above result, we can deduce that there should exist a critical value of β between
β = 0 and 1 where the staggered DM interaction has no effect on dimerization. We study the
effect of varying parameter β with a definite value of K . For definite K we find that there
exists a unique critical value of β = β∗: when β > β∗ the DM interaction will enhance the
dimerization; otherwise the DM interaction will lower the dimerization. This result is plotted
in figure 3. Furthermore, we obtain the relation between elastic coefficient K and critical value
β∗. If the elastic coefficient K increases, the parameter β∗ increases too. The relationship of
K–β∗ is shown in figure 4.

As a conclusion, in this letter, we employ the Lanczos method to study the influence of DM
interaction on the spin–Peierls instability in detail. The result shows that for a definite elastic
coefficient whether DM interaction is in favour of or against dimerization is determined by the
dependence on the intersite distance of DM interaction. When β = β∗, the DM interaction
has no effect on dimerization, and β∗ increases with increasing elastic coefficient.
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Figure 3. The relationship between the displacments
of magnetic ions and the dependence on the intersite
distance of DM interaction.

Figure 4. The influence of elastic coefficient K on the
critical value of parameter β∗.
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